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Abstract— A key prerequisite for precision medicine is the 

ability to assess metrics of human behavior objectively, 

unobtrusively and continuously. This capability serves as a 

framework for the optimization of tailored, just-in-time 

precision health interventions. Mobile unobtrusive physiological 

sensors, an important prerequisite for realizing this vision, show 

promise in implementing this quality of physiological data 

collection. However, first we must trust the collected data. In 

this paper, we present a novel approach to improving heart rate 

estimates from wrist pulse photoplethysmography (PPG) 

sensors. We also discuss the impact of sensor movement on the 

veracity of collected heart rate data. 

I. INTRODUCTION 

Several countries have developed groundbreaking 
initiatives to accelerate new advances in  Precision Medicine, 
[1, 2] urging healthcare professionals, researchers, and 
policymakers to transition from population-level, reactive 
sick-care to personalized, proactive prevention. With the 
recent advent of widely available wearable sensors, the 
possibility of proactively assessing individuals’ health in 
natural settings in a continuous and unobtrusive manner is 
within our reach. By monitoring critical physiological markers 
of cardiovascular, autonomic, and mental health, such as heart 
rate variability and electrodermal activity, we can enable the 
delivery of just-in-time adaptive interventions [3] and help to 
optimize individuals’ health, thus making precision medicine 
a reality. Among many factors, our ability to do so hinges 
upon understanding the quality of physiological data obtained 
from wearable sensors. This paper moves us toward this goal 
by presenting results of a careful laboratory experiment 
assessing the quality of data obtained from two wearable wrist 
sensors (Microsoft Band 2 and Empatica E4), specifically 
considering the accuracy in measuring heart rate as a 
precursor to estimating the important indicator of heart rate 
variability. 

The degree of changes in timing between heartbeats – 
heart rate variability (HRV) – is an informative metric in a 
surprisingly broad range of contexts. Long-term HRV 
(captured over 24 hours) can be indicative of autonomic 
dysfunction and cardiovascular health[4]. Even short-term 
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HRV measures (e.g., standard deviation of beat-to-beat 
intervals captured over 2 to 5 minutes) reflect a wide range of 
issues, including cachexia,[5] hypertension,[6] stress,[7] 
regulation of emotion, and depression [8]. Given the 
enormous impact of cardiovascular disease, stress, and mood 
disorders on population health outcomes, continuous 
monitoring of HRV at the individual level may prove to be an 
immensely important aspect of clinical care [9] [10]. 

Analysis of HRV relies mostly on linear methods. 
(Nonlinear methods, while promising [11], are not used as 
often.) Linear methods include 1) time-domain measures, e.g., 
standard measures of central tendency and spread computed 
over a time interval, ignoring the order of observations, and 2) 
frequency domain measures providing information about a 
relative proportion of high and low frequency signals in a 
given time frame [12].  

Time-domain indices, such as the standard deviation of all 
beat-to-beat intervals or square root of the mean of the squares 
of the differences between adjacent beat-to-beat intervals, are 
well-established biomarkers of cardiovascular health. 
Frequency-domain measures have been shown to represent 
the activity of the autonomic nervous system. In general, low-
frequency (LF) is modulated by both sympathetic and 
parasympathetic systems, and high frequency (HF) represents 
parasympathetic activity only [13]. The ratio of LF to HF is 
representative of the sympathico-vagal balance [12]. 

Accurate continuous measurement of HR in natural 
settings is non-trivial. The majority of research relies on HR 
captured using electrocardiography (ECG). This approach, 
while highly accurate, is impractical for long-term monitoring 
because it requires electrodes to be attached to the patient’s 
chest, which is inconvenient and may interfere with day-to-
day activities (e.g., showering or sleeping) and may cause skin 
irritation if used over several days. Alternatively, HR can be 
derived from blood volume changes measured at extremities 
such as the wrist, finger or earlobe using pulse 
photoplethysmography (PPG). Laboratory studies using PPG 
data usually rely on measurements obtained from subjects’ 
finger or earlobe. While pulse rate variability obtained this 
way is considered to be an accurate estimate of heart rate 
variability [14] when subjects are not moving [15], this data 
capture approach is too inconvenient for continuous, long-
term monitoring. 

A more promising mode of data collection is one using 
relatively unobtrusive wrist PPG sensors embedded in wrist 
watch-likedevices. With a few exceptions, validity studies of 
wearable sensors largely focus on fitness-related measures 
(e.g., number of steps, energy expenditure) and not HRV [16]. 
Existing research that does focus on HR measures suggests 
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that the accuracy of wrist PPG sensors is device-specific and 
diminishes during movement [17-19]. 

One approach to mitigate the issues associated with 
movement-caused distortions is to examine the relationship 
between accuracy of the HR estimates and movement using 
accelerometers that are typically embedded in the monitoring 
devices.  We operationalized movement as short-term RMS of 
3-axis acceleration (RMSA) and compared heart rate data 
collected in a laboratory using two wrist PPG sensors 
(Microsoft Band 2 and E4) against a portable chest ECG 
sensor (Firstbeat Bodyguard 2), which we treated as a 
benchmark. 

II. METHODS  

As a part of larger study, we collected physiological data 
from 9 healthy participants (8 males, ages 18-52). Participants 
were screened for mental health or heart conditions requiring 
medication. Subjects received $50 as remuneration for their 
participation. The larger study consisted of two data collection 
sessions in a laboratory setting and a multiple day in-the-wild 
data collection. In this paper, we describe our methodology 
for the laboratory session, which lasted approximately one 
hour. We collected interbeat intervals, electrodermal activity, 
accelerometer data from synchronized Microsoft Band 2 
(MB) and E4 wrist devices with PPG sensors. We also 
collected interbeat intervals from Firstbeat Bodyguard 2 using 
ECG electrodes as our gold standard.   We followed device 
guidelines and instructions for sensor preparation (e.g., 
cleaning with alcohol). Our general approach to compare the 
sensors was to cycle between stress and relaxation through the 
duration of the lab session. We first collected basic 
demographics (age, gender, height, weight, handedness). To 
understand subject trait characteristics relating to affect and 
stress, we administered the Perceived Stress Scale [20] and 
the Patient Health Questionnaire [21]. Subjects were then 
introduced to the devices and instrumented. The MB was 
worn closer to the wrist and the E4 higher up on the arm. Both 
wrist devices were worn clasp down with the PPG sensor 
facing the top of the wrist. The Firstbeat [FB] was worn on 
the chest according to device instructions. Participants were 
then led through multiple cycles of relaxation and stressor 
tasks to elicit physiological changes enabling us to capture a 
broad range values. Our stressor tasks included showing 
images from the International Affective Picture System 
(IAPS) [22] on a desktop monitor, talking aloud about the 
picture’s contents, physical activity (marching with arms 
swinging and stationary biking with arms held still to compare 
accelerometer output), Stroop test, and mental arithmetic with 
distracting background noise. Relaxation tasks included 
sitting still in the quiet lab environment with lights off while 
relaxing music was played and viewing neutral IAPS imagery. 
Between viewing IAPS imagery and relaxation periods, 
participants also completed a short ecological momentary 
assessment (EMA) consisting of a self-assessment-manikin 
and a short question asking to rate their level of stress or 
excitement and if they had any moments that were stressful or 
relaxing. We chose this EMA during the lab session to 
provide an account of task-to-task changes in self-reported 
affect. Finally, a discreetly placed microphone was also used 
to collect the subjects’ voice for future voice affect analysis. 

III. DATA PROCESSING 

As noted in the method section, the raw output data from 
each sensor comprised time-stamped sequences of events 
representing consecutive contractions of the heart estimated 
either by the ECG R waves or by the PPG pulse detection.   
Even in the relatively controlled laboratory environment, the 
raw data stream contained outliers and missing samples, 
therefore, data cleaning was necessary (Fig. 1). There are 
many ways to compare the sensors that would include various 
metrics used to characterize HRV [23], but since the 
fundamental measure that is used to derive all the HRV 
measures is HR, our approach is based on a comparison of 
estimates of the HR data from each sensor. 

The HR function is not directly observable and must be 
inferred from sensors that can detect the heart contraction 
either by the concomitant electric signal ECG or pressure 
pulse observed at various parts of the body. The ECG sensor – 
our gold standard – detects the QRS complex, records an 
estimate of the time of the R peaks of the ECG waveform, and 
generates a sequence of time-stamped events.  Such sequences 
are mathematically treated as point-processes and this insight 
enables us to take advantage of the relevant approaches 
developed in mathematics. Such stochastic point processes are 
often described by an intensity or rate function that, in our 
case, corresponds to the heart rate function as a continuous 
representation of the sequence.  Our data analyses are, 
therefore, based on the assumption that heart rate can be 

represented by a continuous intensity function  v t that 

describes and perhaps controls the firing of the sinoatrial node 
and allows a mathematical interpretation as the intensity (or 
rate) of the stochastic point process.  

The value of the heart rate function at a given time is the 
consequence of a variety of factors including a competition 
between sympathetic and parasympathetic autonomous neural 
systems, breathing, etc.  As such, its characteristics can then 
be used to estimate various aspects of the patient’s state 
including clinical symptoms but also activity level, metabolic 
rate, and affective states.   

Given this notion, we estimate the instantaneous heart rate 
function by interpolating the sequence at a uniform sampling 
rate that is sufficiently high to capture with an acceptable 
accuracy individual features of the HR function. We chose the 
sampling rate to be at 100 Hz.  Although there are concerns 
involving the best way to estimate the HR function, especially 
for short intervals, [24], our HR estimation approach is based 
on a resampled version of the cubic spline interpolation – a 
method that has been successfully used in prior work [25].  

Our approach to data cleaning is based on a model of heart 

rate variability where HR can be represented by a continuous 

band-limited function controlling the sino-atrial node of the 

heart, integrating complex interactions of a variety factors. 

This function  v t  is sampled at intervals that are 

determined by  v t  combined with internal and external 

noise sources. This approach is similar to integral pulse 

frequency modulation  models [26, 27] extended to 

incorporate noise and variability.  The objective of this work 

is to  assess the degree of agreement between HR functions 



  

 
 

 v t estimated from different sensors detecting RR intervals. 

Our initial approach is inspired by [28] but based on using 

robust estimates of RR variability. The RR sequence is then 

smoothed using singular spectrum analysis [29]. The singular 

spectrum analysis can be thought of as an extension of the 

Poincare method. We applied this process only to the data 

from the MB because the FB was taken as a gold standard 

and the E4 device already had embedded data cleaning 

processes. 

 

 
Figure 1. Comparison of raw and processed signals. The top graph is the 
sequence of raw RR intervals from the FB and MB. The middle one shows 
raw FB RR intervals and cleaned MB RR intervals. The bottom graph shows 
a comparison of raw and cleaned MB data. 

IV. STATISTICAL ANALYSIS 

In our statistical analyses, we used the cleaned data (as 
described above) unless otherwise stated. Accelerometry 
signals from E4 and MB were upsampled to 100 Hz. Next, all 
signals, including RR-intervals, were downsampled to 20 Hz 
commensurate with the frequency content of the signals. 
Gravity was removed from each axis individually by 
computing a mean of a rolling window of width 1 minute for a 
given axis and subtracting this mean from each sample for this 
axis. We used resulting values to compute RMS of 
acceleration. RR signals were aligned using a lag obtained 
from cross-correlation. 

The next step involved a selection of a metric for 
comparisons of the HR functions from different sensors. 
Following previous research [30], we used the concordance 
correlation coefficient [31], which we computed over a 1-
minute rolling window, because it accounts for systematic 
bias in HR and the lack of linear correlation. 

A representative example of the resulting correlation 
between the FB and E4 & MB data computed for the period 
of the laboratory study is shown in Fig. 2. The top graph 
represents the correlation for each window temporal position; 
the bottom graph represents the RMS of acceleration 
computed over the same window. 

We modeled the relationship between agreement of RR 
signals and motion using a linear regression with RMS of 

acceleration (RMSA) as predictor of concordance correlation 
coefficient (CCC). To assess performance of our data cleaning 
approach, we computed two CCCs and fitted two models; one 
using raw data and one with data cleaned using singular 
spectrum analysis. Our approach improved CCC of MB and 
FB (Fig.3). Mean of CCCCLEANED (.324) is statistically 
significantly higher than CCCRAW (.283) (Welch Two Sample 
t-test, t = 19.764, p < .001). Furthermore, regression analysis 
revealed that the impact of RMSA on CCC is smaller when 
data is smoothed. (β RMSA CLEANED = -.109, p RMSA CLEANED < 
.001, R2 = .003; β RMSA RAW = -.942, p RMSA RAW < .001, R2 = 
.236). These results indicate that our approach improves HR 
estimates; some of the corrected artifacts seem to be 
originating from motion artifacts. 

Figure 2. Example of correlation between FB and MB & E4 sensors. Gains of 
acceleration were adjusted. 

Figure 3. Correlation between FB and MB raw & MB cleaned RR signals. 
Bars represent means of correlation computed over binned values of RMSA. 
Cleaned MB data (blue) is more highly correlated with FB than raw MB data 
(red) for most values of RMSA. 

To estimate the impact of RMSA on CCC we fitted two 
models using not cleaned data, one for MB and one for E4. 
For each sensor, the relationship between RMSA and CCC 
was statistically significant. RMSA was statistically 
significant predictors of CCC between FB and MB (β RMSA = -
.942, p RMSA < .001, R2 = .236). Similarly, RMSA was a 
statistically significant predictor of CCC between FB and E4 
(β RMSA = -1.234, p RMSA < .001, R2 = .066). The mean of 
CCCE4 (.300) is statistically significantly higher than CCCMB 
(.283) (Welch Two Sample t-test, t = 8.698, p < .001). 

V. RESULTS 

Preliminary analysis of data from the whole study showed 
that the results from the data of one subject presented here are 
representative of the general results across all nine 
participants. Our analysis demonstrated that the coherence 
between the PPG and the ECG data is not as high as one 
would like to assure accurate HR assessment. However, our 



  

novel data cleaning approach can be used to improve 
coherence. We also detected that RMSA has a large, negative 
impact on the agreement between PPG and ECG signals. 
Researchers relying on HRV estimates obtained from PPG 
sensors may consider using RMSA to assess the degree to 
which they should trust these estimates. There is a good 
chance that a more fine-grained analysis, perhaps relying on 
nonlinear methods and fusion of the accelerometry with the 
HR estimate, might be used to further correct motion-based 
distortions. 

VI. CONCLUSION 

Our study has indicated the need for algorithms using 
RMSA to determine when HRV estimates from a wrist device 
are sufficiently accurate for health coaching feedback. We 
propose including the above factors as parameters in modeling 
sensor agreement with the gold standard ECG signal. The 
promise of using wrist PPG sensors to monitor HRV in real 
time offers many opportunities to improve continuous health 
coaching interventions.  Although the accuracy for these real 
time estimates need not be perfect, knowing when they are 
reliable can offer a substantial improvement to the 
effectiveness of the coaching interventions.   
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