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Abstract

Health-related behaviors are among the most significant determinants of health and quality of life. 

Improving health behavior is an effective way to enhance health outcomes and mitigate the 

escalating challenges arising from an increasingly aging population and the proliferation of 

chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors 

on a wide scale, advances at the intersection of technology and behavioral science may provide the 

tools to address this challenge. In this paper, we describe a vision and an approach to improve 

health behavior interventions using the tools of behavioral informatics, an emerging 

transdisciplinary research domain based on system-theoretic principles in combination with 

behavioral science and information technology. The field of behavioral informatics has the 

potential to optimize interventions through monitoring, assessing, and modeling behavior in 

support of providing tailored and timely interventions. We describe the components of a closed-

loop system for health interventions. These components range from fine grain sensor 

characterizations to individual-based models of behavior change. We provide an example of a 

research health coaching platform that incorporates a closed-loop intervention based on these 

multiscale models. Using this early prototype, we illustrate how the optimized and personalized 

methodology and technology can support self-management and remote care. We note that despite 

the existing examples of research projects and our platform, significant future research is required 

to convert this vision to full-scale implementations.
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I. Introduction

The rapidly increasing cost and limited effectiveness of healthcare is one of the most 

important societal and global challenges. These circumstances have been exacerbated by an 

aging “boomer” population and the increasing prevalence of chronic diseases in younger 

demographics [1], [2]. In addition, there is increasing recognition that lifestyle behaviors 

account for a substantial portion of premature mortality (more than 40%) [3]–[5] and are 

responsible for the majority of functional health and quality-of-life outcomes [6]. These 

observations would suggest the need to focus resources on improving health-related 

behaviors. Traditionally, health behaviors have been defined as actions taken by a person to 

maintain, attain, or regain good health and prevent illness. Lifestyle and health-related 

behaviors include physical activity, such as exercise, nutrition, alcohol consumption, 

sleeping, socialization, and smoking. These may be overt (motor or verbal) and directly 

measurable, or covert (activities not viewable, e.g., physiological responses) and indirectly 

measurable. In essence, behaviors are physical events that occur in the body and are 

controlled by the brain [7], [8].

Unfortunately, poor health behaviors and habits appear to be easily acquired but difficult to 

eliminate. Perhaps even more challenging is the fact that once developed, good habits and 

behaviors are difficult to maintain long term. One possible way to address these issues is 

through personal face-to-face coaching, but this approach is costly and difficult to scale. 

Alternatively, recent advances in sensor and communication technology, in combination 

with data and computational modeling, can play a pivotal role in transforming health 

behavior change interventions [9]. Concurrent developments in sensor and communication 

technology and data science have now enabled the unprecedented quantification of 

behaviors in “the wild”—in real life and in real time [9]. These two factors, in combination 

with progress in computational modeling, have paved the way for the nascent field of 

behavioral informatics. Behavioral informatics is a scientific and engineering area 

comprising behavior monitoring, assessment, computational modeling, inference, and 

intervention. This field is poised to advance a set of technologies and computational 

approaches to facilitate successful interventions that are scalable, cost effective, and timely.

This paper describes an approach—currently in the evaluation stage—that provides an 

economically feasible method for helping people to improve and manage their health 

behaviors. The essence of this approach, shown in Fig. 1, is a coaching system composed of 

a number of components (or building blocks) that “closes the loop” between data acquisition 

and intervention. These components transform information from the physical world into data 

via a variety of sensors that can measure behaviors that are overt (motor or verbal) and 

directly measurable, or covert (activities that are not viewable, e.g., physiological responses) 

and indirectly measurable. The data collected are combined with subjective responses from 

the participants and processed by model-based assessment, predictive inference, and 
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assessment algorithms that translate the data into useful information for a human coach, 

assisted by an artificial intelligence embedded into a coaching platform, in supporting 

individuals in improving health behaviors.

In this paper, we describe the structure of our prototype Health Coaching Platform and 

address aspects of the components necessary to supports its functions. One critical element 

to achieve this goal of closing the loop involves the development of multiscale 

computational models that capture aspects of behaviors at different scales, ranging from 

acquiring and processing raw sensor data, such as leg motion measurement or beat-to-beat 

heart rate (HR) monitoring, to quantify activities like eating, physical activity, and sleeping. 

These models provide predictions that generate prompts and cues to provoke and encourage 

behavior change in an optimal manner for each individual at the appropriate time. The 

combination of sensors with multiscale computational models allows us to observe and 

assess human behaviors unobtrusively, infer and predict individual health states and likely 

behaviors, and deliver optimal just-in-time interventions.

II. Closing the Loop With Intervention Protocols

In healthcare and health psychology literature, there is considerable evidence that health 

interventions tailored to individuals are more effective than generic ones [10]–[12], and that 

timely feedback plays an important role in changing and sustaining behavior [13]. Coaching 

interventions that incorporate data from new sensor technologies and new methods for real-

time communication with patients have the capability of enhancing the tailoring and 

timeliness of coaching feedback and encouragement. Computational models that provide an 

assessment of patient state, activities, and context (such as location or previous activities) 

can make health behavior interventions both more effective and scalable. As an example, 

our work on health coaching interventions for older adults in the home [14] uses a Health 

Coaching Platform with a data flow illustrated in Fig. 2. The blue boxes at the top of the 

diagram show how data from the initial interview, combined with monitoring data, builds 

and updates a dynamic user model which in turn determines the coaching actions. Based on 

this data flow, our work has explored methods for delivering tailored coaching using state-

dependent active methods triggered by sensor data feedback and user input. This dynamic 

user model includes health behavior change variables, such as motivations, barriers, and 

readiness-to-change [15]. Fig. 2 illustrates that the inputs to the dynamic user model (both 

initial assessments and updates based on inferences from the sensor data) are used to select 

phrases from the message database for generating alerts and tailored coaching messages.

The dynamic user model represents the current state of the patient and drives the 

semiautomated tailored messaging for the health interventions, as displayed in tailored 

interfaces for each stakeholder. This system was designed to facilitate a health coach, trained 

in health behavior change, in reaching a large panel of older adult participants in their home 

environment. The Health Coaching Platform includes modules for cognitive exercise [14], 

[16], physical exercise [17], sleep management [14], [18], medication management [19], and 

socialization [20].
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As an additional source of information about a patient, coaching protocols that take 

advantage of the rapid uptake of new mobile communications technologies have given rise 

to techniques for ecological momentary assessment (EMA) [21]–[24] and just-in-time 

adaptive intervention (JITAI) [25]. Sensor feedback (usually from wearables or the user’s 

smart phone) can be used to trigger a quick assessment (EMA) or coaching message (JITAI) 

that is timely as well as context and location appropriate. In addition to being effective, these 

approaches are more scalable than traditional health behavior interventions [26].

To realize this goal, it is necessary to develop ways to monitor physical and physiological 

aspects of behaviors, convert the raw data into behavioral inferences, and then generate 

behavioral interventions. We demonstrate that this can be accomplished with a sequence of 

building blocks aided by computational models at each stage. Accordingly, there are three 

key areas that cover the different types of models needed to optimize the intervention.

1. Data science addressing acquisition of raw data.

2. Actions and activity recognition from raw data.

3. Models of health behavior change.

Although we have developed a Health Coaching Platform based on these principles with the 

previously described building blocks and subjected it to initial evaluation [14], [17], [19], 

[20], [27], [28], there are many remaining challenges that arise in the process of applying 

this approach to specific domains. The subsequent sections of this paper describe relevant 

aspects of data science followed by a multiscale modeling approach with examples 

converting raw data to usable knowledge enabling inferences and predictions. We then 

describe early approaches to computational modeling of behavior change—the most 

challenging and least developed area to date. Although we cover a number of existing 

realizations, we have also noted challenges that still need to be addressed where appropriate.

III. DATA SCIENCE IN SUPPORT OF BEHAVIOR MONITORING

Data quality assurance is critical in any sensing application, but particularly when using 

minimally obtrusive or unobtrusive heterogeneous sensors and data types. In fact, in 

behavioral informatics, the notion of a “sensor” needs to be interpreted broadly in that a 

sensor or sensor stream may represent any source of raw data related to behaviors as 

illustrated by the examples in Table I. This table lists a small subset of sensors that have 

been used in a variety of studies and applications in behavioral informatics. There are 

numerous examples where the understanding of underlying processes is necessary in order 

to assess and improve the generalizability of the analyzed results ranging from physical 

activities [29] to searching the Internet [30].

Oftentimes, the context affecting the collected data is unknown and must be estimated; thus, 

limiting the interpretability of the observations. For example, in addition to subject-

dependent variability, the data may be affected by location and environmental factors, 

resulting in apparent outliers. It might be necessary to have adaptive filtering or sampling 

based on the task or context (e.g., location, background activity). In our previous work, we 

have found that outlier measurements and missing data may frequently require 
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understanding of the specific circumstances [31]. When monitoring health behaviors, 

missing data are often missing not at random, but rather are correlated with the activity or 

the state of the monitored individual. For example, patients may stop weighing themselves 

when they have been consuming high calorie foods or eating more than normal, yet be more 

likely to weigh themselves when adhering to their dietary goals. Knowledge and modeling 

of this bias is important when inferring the intervening weight measurements in a coaching 

intervention.

An additional process limiting data utility to be addressed by data science approaches is the 

censoring of data, where due to the measurement methodology, the value or observation is 

only partially known. Censoring may arise from a subject’s early withdrawal from a study or 

from limitations of a sensor or assessment instrument. For example, a sensor’s limited 

dynamic range or limits of response scales on questionnaires could censor the acquired data. 

Quite often, it is apparent that subjects “top out” or “bottom out” on assessment scales used 

in clinical trials. To mitigate these problems, we advocate improving the dynamic range of 

both sensors and clinical assessments and model the distortions due to these limits. For 

example, clinical assessments are improved by anchoring the scales, i.e., providing 

examples of minimum and maximum limits, and by modeling subjects’ ratings using scaling 

techniques such as the Item Response Theory [32]. In case of physical sensors, the effects of 

these aberrations can be reduced by modeling the distortions.

A useful approach to mitigate a variety of data issues is to combine data from multiple 

sensors, deploying a variety of fusion techniques. A specific example is the inference of 

smoking behavior from accelerometers and pulmonary plethysmography [33], [34]. 

Although there has been significant progress in a number of specific areas, there is a need 

for further research to address general context-dependent sensing.

IV. MODELS OF SENSING AND ACTIVITY RECOGNTION

Considering the goal of optimizing JITAI as a control-theoretic problem, it is necessary to 

assess and predict behaviors continuously or at least sufficiently frequently. This requires 

continuous application of behavioral informatics, including sensing, assessment, and 

inference of behaviors. Since raw sensor data can typically only measure fine grain physical 

phenomena, it is necessary to make inferences about behaviors with computational 

multiscale models as illustrated in Fig. 3. Raw sensor data provide fine grain information 

about physical phenomena, such as instantaneous acceleration, that may need to be 

converted to elementary movements and actions that may in turn provide information about 

the activity and health-related behaviors, such as exercising. In the remainder of this section, 

we will describe the different building blocks for converting data to estimates of activity and 

patient states.

Prior to the description of the multiscale modeling details, we note that the continuous 

monitoring of behaviors and physiological phenomena has the potential of revolutionizing 

not only behavioral interventions but also clinical assessments and therapy by providing 

information about subtle changes, trends, and variability assessments within individuals.
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Diverse sensors and their resulting data streams represent the first stage in the quantification 

of behaviors. For example, a participant’s responses to questions, observations of caregivers, 

or clinicians as noted in the electronic health record, a participant’s telephone use history, 

purchasing history, or similar sources of behavior related data may all provide information 

used in computational models to estimate activities or patient state. These additional types of 

assessments can now be made more frequently using mobile phones for EMA [23], [24], 

where patient self report, such as aspects of health or psychological states that are not yet 

amenable to unobtrusive sensing, provide important inputs to a health behavior change 

model.

A. Models of Data Streams

The first step in the assessment of behaviors includes a transformation from raw sensor data 

to useful information. What makes this task particularly challenging is the need to quantify 

behaviors in real life and in natural environments with data acquisition methodologies that 

are as unobtrusive as possible. Our own work, as well as that of other researchers, suggests 

that any methodology that requires the participants to wear, operate, and maintain devices 

solely for monitoring can only be sustained for limited periods of time [35], [36]. To 

overcome this limitation, sensors need to be unobtrusively embedded in the environment or 

in devices used for other purposes, such as mobile telephones. Alternatively, they may be 

nested in motivating systems like step counting devices or safety alarms [37]. As a result of 

the unobtrusive nature of sensing, the data usually represent only surrogate markers of the 

phenomenon of interest, e.g., acceleration rather than energy expenditure. Consequently, 

raw data are subject to distortions, contamination with noise, and significant effects of the 

context of the measurement. Although these undesirable influences are common with almost 

any biomedical measurement, it is particularly significant in unobtrusive assessment of 

behaviors. For example, the assessment of older adults’ ability to perform activities of daily 

living (exercising, making a meal, taking a bath, getting dressed, etc.) must be inferred from 

an imperfect sensing of location, device interaction, and acceleration data. An effective way 

to mitigate these challenges is to develop computational models of sensors, which provide 

transformations from raw sensor data and actions, while incorporating context as much as 

possible. This usually involves a strategy of combining information from multiple sensors.

B. Computational Models of Sensors

Sensing can be interpreted as a measurement process that associates numerical elements to 

attributes of a class of objects or events. We formalize a measurement process as a 

transformation H that maps health and behavior-related events, objects, or states ψ̂ ∈ Ψ to 

elements in a numerical set Y [38]. The map H assigns a numerical value to aspects of 

events or actions, y (t) = H [ψ] (t). For example, using an accelerometer attached to the waist 

of an individual, the transformation H converts acceleration during walking or riding a car to 

sampled acceleration contaminated by the noise. It is also essential to recognize that a sensor 

transformation frequently depends on the context of the observation, namely y = H [ψ; C], 

where the vector C represents the context of the observation, with context defined as the set 

of environmental and situational aspects that affect the interpretation of the primary 

measurements and observations [39], [40]. For example, in the case of the accelerometry, it 

is important to distinguish data collected during running from those collected while riding in 
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a car over rough but periodic terrain. Similarly, observing changes in HR and HR variability 

(HRV) to assess the rate of energy expenditure (power), the context may involve an activity 

such as running in contrast to watching an exciting film.

Although sensing the torso acceleration, the purpose of these measurements is to infer 

aspects of the actions and activities ψ. If H were known, invertible and noiseless, we could 

estimate the features of the actions by inverting the transformation H, namely ψ̂ = H−1 [y;C]. 

In most practical situations, however, H is unknown and must be approximated; in every 

case, it is important to incorporate as much as possible principled information about the 

transformation. In the case of accelerometry, energy expenditure is governed by Newton’s 

laws, combined with the effects of the location of the sensor. In many situations, the 

fundamental principles are difficult to incorporate, and the transformation is estimated using 

data-driven approaches. Even in these situations, it is useful to make assumptions that 

constrain the transformation. For example, if H can be approximated by a linear system and 

the uncertainties by Gaussian random variables, we could use the Kalman filter approach, or 

its various extensions, for state estimation. In general, knowledge of H or its approximations 

is useful in improving the estimates of the states that are not directly observable.

A simple example of a model-based approach involves the measurement of walking speed 

using passive infrared (PIR) motion sensors mounted on the ceiling of a hallway [41]. Each 

sensor event (firing) is an indication that a person is passing through its field of view; from 

these firing times, it is possible to estimate the speed of walking. However, Hagler et al.’s 

study [41] showed that even though the sensors were stationary, it was necessary to model 

each sensor’s errors in both time and space in order to obtain unbiased estimates of the 

speed of walking [41]. Thus, each firing of a PIR detector needed to be represented by a pair 

(xi − εx , ti − εt ), where xi is the location, ti is the time of the firing event of the ith sensor, 

and εx , εt are random variables representing the uncertainty associated with the 

corresponding dimensions. The reason for this type of representation is that the temporal 

uncertainty representation alone was not sufficient to account for the variability in the 

thermal signal generated by a moving human body, which depends on variables like body 

temperature and amount of clothing. As this example suggests, principle-based modeling of 

sensed data does not only involve the sensor processes but also aspects of the observed 

system, in this case, the participant’s actions.

Another example involves the assessment of sleep using a variety of force transducers and 

motion detectors. This approach involves strain gauge force sensors (load cells) installed at 

the four corners of a rectangular bed [42], [43]. This sensor setup can be used to infer 

movements in the bed, breathing, and even heartbeat. A biomechanical model of a breathing 

human was used to interpret the changes in the forces at the bed corners.

Perhaps the most information-rich sensors involve continuous video data streams (see the 

review by Aggarwal and Ryoo [44]) that covers a variety of the issues, including approaches 

to activity classification discussed in the next section. Although a video-based assessment 

raises concerns of privacy, these can frequently be alleviated by converting images to a 

greatly reduced numerical representation, eliminating the possibility of recovering the 

original images.
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Although many implemented approaches to the interpretation of the sensor data exist, there 

are remaining challenges that need to be addressed. These include unobtrusive and adaptive 

calibration, sensor placement, and context invariance.

C. Modeling and Recognition of Activities

The ability to recognize people’s activities (exercising, gardening, etc.) is one of the pillars 

of behavior informatics, with applications ranging from healthcare to designing robots that 

interact with people. For behavior change interventions, knowledge of activities throughout 

the day provides useful information for generating optimal intervention strategies. In the 

case of caring for older adults, this information enables assistance when needed in their daily 

living activities [45]. Activity recognition also includes the detection of anomalies and 

adverse events, such as falls or deviant behaviors in security and surveillance applications.

In the most general terms, the problem of activity recognition amounts to inference of 

human dynamics typically involving movements or interactions with objects or other 

humans. Ideally, the inference problem involves classification of activities from estimates of 

movements and actions obtained from sensors as discussed in the previous section.

Although the framework for activity recognition is similar to that for sensor transformation, 

the domain of activity recognition is more general, involving estimation and classification 

based on the sensor inferences. Most of the approaches involve data-driven methods in 

combination with state transition models, context-free stochastic grammar, and space-time 

trajectories, although there have been approaches that incorporate “stick figure modeling” 

[46]–[48] which also incorporates biomechanical principles. Recent advances in 3-D image 

capture enable effective model-based inferences. These have been used to assess gait 

parameters and exercise performance [49]–[52]. One useful example deploys hybrid models 

of gait that combine continuous dynamical systems with discrete phase switching [50]. This 

biomechanical model has been particularly useful in the interactive exercise interventions 

and coaching intervention for older adults using the Microsoft Kinect camera [17].

Despite the advantages of video-based activity assessment, many existing studies monitoring 

older adults have used PIR motion detectors for activity monitoring and recognition because 

of cost, power, and privacy issues. The data from these sensors are sequences of firing 

events represented by sequences of pairs S = {(s1 , t1 ) , (s2 , t2 ) , . . . , (sn , tn )}, where si , 

ti represent the sensor identity and the time of firing, respectively. The goal of the inference 

process is to assign labels to the elements of S. This activity recognition processes must 

simultaneously determine the boundaries between activities (segmentation) and 

classifications. This is generally accomplished using a variety of modeling techniques for 

supervised and unsupervised training of clustering and recognition algorithms. As such, 

researchers attempted to use hidden Markov models (HMM). Using this type of approaches 

yielded reasonable activity recognition rates, ranging from 0.60 to 0.80 [53], [54]. These 

approaches, based on stationary sensors, can be complemented by mobile or wearable 

devices, especially when the monitored individuals are outside their homes [23], [55], [56].

Notwithstanding the advances in activity recognition, there are many remaining challenges. 

One of the major barriers to using existing approaches like machine learning for activity 
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classification is the difficulty in obtaining labeled data. Another problem is testing the 

fundamental properties of activity models. For example, the Markov property is rarely 

tested, and when it is, rarely supported by the data.

D. Model-Based State Estimation From Physiological Sensors

There are a variety of wearable sensors for collecting physiological measurements in the 

home, workplace, or general environment. These include sensors that measure blood 

glucose, blood pressure, electrodermal activity, oxygen saturation, airway peak flows, and 

HR. Today, wearable sensors allow continuous long term beat-to-beat monitoring of HR and 

HRV, either based on electrocardiography or photoplethysmography. As an example of 

inferring patient state from physiological measures, we will consider HR and HRV to 

estimate patient stress and stress recovery. HR and HRV vary remarkably depending on 

physical activity, stress, and health, making HR and HRV interpretation complex. However, 

when combined with physiological and computational multiscale models, HRV may provide 

rich information about several health behaviors.

HR monitoring allows the assessment of the intensity of physical activity, as HR is almost 

linearly associated with oxygen consumption (VO2) at moderate to submaximal intensities 

in steady-state exercise [57]. However, the intensity of real-life physical activity usually 

changes repeatedly, and the relationship between HR and VO2 is curvilinear for very low-

intensity physical activities and near-maximal exercise. A model based on HRV, age, 

gender, weight, height, and self-reported physical activity class was recently shown to 

provide accurate estimates of the intensity of the physical activity during real-life conditions 

[58]. Hence, HRV monitoring allows reliable continuous assessment of physical activity, 

exercising, and energy expenditure in real-life conditions. HRV is associated with 

functioning of the autonomous nervous system and, hence, is modified by stress and 

relaxation, physical activity, and health status [59]. However, HRV has high inter- and 

intraindividual variability, which complicates the interpretation and the use of HRV as a 

measure of stress. With a multiscale model-based approach, it is possible to transform the 

HRV signal into a quantification of an individual’s stress and recovery during daily life (see 

Fig. 4) [60], [61]. The HRV signal is first analyzed using a sliding window approach to 

quantify HRV, detect respiration rate (based on respiratory sinus arrhythmia), and estimate 

momentary oxygen consumption (VO2) and excess postexercise oxygen consumption [58]. 

This modeling step transforms raw sensor data into physiologically relevant parameters. The 

next step applies adaptive segmentation to divide the data into stationary and transient 

segments, which are further classified based on their physiological parameter values into the 

physiological states of physical activity, physiological recovery, stress, and other. This step 

transforms moment-by-moment physiological parameter vector data into physiologically 

and behaviorally meaningful states. Finally, the classified state data may be transformed to a 

more holistic representation of the individual’s physiological and behavioral status over the 

entire monitoring period, providing total energy expenditure, total amount of physical 

activity and exercise, and stress and recovery balance (see Fig. 5).
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V. Models of Behavior Change

The task of optimizing interventions can be interpreted as a control theory problem, where 

differences between observed behaviors and desired behaviors are used to generate the most 

effective input (intervention), as outlined in Fig. 1. An effective utilization of the control-

theoretic framework, however, requires a quantitative characterization of the psychological 

state and corresponding dynamics as a function of time for each individual participant.

The characterization of health behaviors dynamics, as well as their change, requires multiple 

time scales. For example, the decision of whether or not to engage in a particular physical 

activity or consume a healthy snack occurs on a scale of seconds or minutes, but changing 

one’s lifestyle to accommodate regular visits to the gym may take days or weeks.

The multiscale dynamics must be reflected in monitoring and inference as well as in 

generation of interventions. For example, activity recognition may derive moment-to-

moment information about an individual’s physical activity, exercise, and sleep, which may 

eventually accumulate into the quantification of behavioral patterns as compared to target 

behaviors, as illustrated in Fig. 3. Interventions, such as reminders, suggestions, and 

recommendations (e.g., for physical exercise or avoidance of unhealthy foods), might be 

most effective as a JITAI.

In contrast to the momentary interventions, recommendations for lifestyle changes 

influencing physical activity and exercise may deliver information about the target quantities 

on a daily or weekly level, and these targets should be dynamically adjusted to account for 

potential other factors such as acute illnesses. To optimize interventions, therefore, we need 

multiscale inference, modeling, and prediction of behaviors, which in turn requires a 

computational framework for behavior and behavior change.

A theoretical framework useful for predictive modeling in many domains is based on system 

theory, exploiting a state-space representation. A typical dynamical system is defined in 

terms of a state space Q (t) ∈ Ψ, an output vector V (t), and input vector A (t). To represent a 

behaving human, the inputs may include environmental, contextual, and social stimuli, as 

well as coaching events. The output vector comprises actions, as described above and shown 

in Fig. 3, that may include limb movements, speech acts, classified activities, or even 

responses to questionnaires (EMAs). Both inputs and outputs are typically random variables.

Although the system dynamics may be continuous, we assume that all the components are 

sampled at discrete times described by a sequence Tn = {t1 , t2 , . . . , tn } , and the sequences 

of unobservable states, coaching inputs, and measurable variables are given by Q (Tn ) , A 
(Tn ) , V (Tn ), respectively. To make predictions, we need to represent the state transition 

dynamics Q (tn + 1 ) = G [Q (Tn ) , A (Tn )] and the observation random sequences given by 

V (tn ) = R [Q (Tn )] .

Ideally, the state space and the state transition processes would be determined by 

psychological, empirical, and theoretical research. Unfortunately, with very few exceptions, 

most psychological theories of behaviors and behavior change have not been specified to 

characterize the dynamics at the different time scales to enable continuous quantitative 
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assessment and predictions for individuals needed for the generation of optimal 

interventions. In the following sections, we present recent attempts to address this issue.

A. Discrete State-Space Representation

One starting point for this type of development was the Trans-theoretical Model (TTM) of 

Behavior Change [62]–[64] postulating discrete states for “readiness to change.” For 

example, in the TTM, a participant is assumed to progress through a small number of 

“readiness-of-change” states: precontemplation, contemplation, preparation, action, 

maintenance, and possibly termination [62].

Although as originally specified, the TTM has a number of issues [65], including limited 

predictive power, it can be reformulated in terms of a discrete state transition model as 

shown in Fig. 6. Adding several assumptions, some researchers proposed to characterize the 

behavior change process in terms of a hidden (latent) HMM [66]–[68]. Markov models [69], 

[70], and, in particular, HMM, have been effectively applied in many disciplines, ranging 

from learning theories [71], [72] in psychology and bioinformatics to automatic speech and 

image recognition in engineering, and have very well-developed techniques for training and 

inference (e.g., see Rabiner [73]). Although HMM-based approaches are intuitively 

appealing for the characterization of behavior change [74], they are based on a number of 

strong but questionable assumptions, such as the Markov property and its consequence—the 

exponential dwell time distribution. The Markov property may not hold because the prior 

participant’s history may change the probability of transitions. For example, the probability 

of a transition from the Preparation to the Action state may depend on whether the 

participant has previously been in the Action state or has arrived there from the 

Contemplation state. Similar issues arise when considering whether the dwell (time spent) in 

a given state of the Markov model is exponentially distributed; it is more likely that a 

participant would need some minimum time to spend in a given state before transitioning to 

the next state. An additional issue with using discrete state Markov models (see Fig. 6) 

relates to the fact that any intervention, such as coaching, would affect the transition 

probabilities and preclude the use of many computational tools for training and inference.

The discrete state Markov transition model could be modified to mitigate some of these 

issues, but its increased complexity would compromise its predictive power. For example, 

we could use a hidden semiMarkov model (HSMM) [70], [75] that can incorporate arbitrary 

dwell distributions. As a result of this generalization, the typical training of the HSMM is 

significantly more complex than the standard HMM. Incorporating the coaching effect 

would require modification of the transition probabilities that would likely reduce the 

predictive power of the discrete state Markov model.

B. Linear Dynamical System Representation

Rivera et al. developed a structural equation model (SEM) of health behavior change using 

linear dynamical control systems [15], [76]. The model is based on the psychological theory 

of planned behavior [77] that links perceived behavioral control, subjective norm, and 

attitude toward behaviors to the actual behaviors.
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The linear dynamical system approach has been motivated by structural equations modeling 

[78] of the theory of planned behavior [77] that generated parameter estimates using 

population statistics and is itself based on the assumption of linear relationships and 

Gaussian distribution of errors. Although the SEM represents a static asymptotic state of the 

system, Rivera et al., explored the generalization of SEM to a dynamical system, assuming 

that the SEM parameters can be used as the coefficients of the differential equations 

representing the corresponding deterministic linear system [79].

Although this approach may eventually prove effective, it has currently a number of 

limitations. In particular, the present model has a large number of degrees of freedom 

(parameters), so the complexity of the system may approach, or even exceed, the degree of 

freedom in the data. As in the considerations of HMM, strong assumptions, e.g., linearity, 

need to be tested in order for this system to be used as an engine underlying interventions. 

We anticipate that a modified version of such a system, combined with certain nonlinear 

components, may be a potentially effective representation.

C. Dual-Process Representation

During the last couple of decades, behavioral researchers began considering a different class 

of models based on the dual-process theory [80], [81]. There is substantial evidence that 

human decisions are based on a combination of responses from two concurrent systems. 

Type 1 represents an automatic process, generating habitual responses/behaviors that are 

executed rapidly without conscious elaborations. A Type 2 process, such as cognitive 

decision making, is based on explicit problem-solving, and, therefore, slower than the Type 

1 system. Thus, in cases where the systems compete, the faster Type 1 system may 

frequently “win,” and we take action based on our habitual response before we can apply 

reasoning. Because the habits that correspond to unhealthy responses are generally more 

prevalent, the Type 1 system’s short-term domination results in making poor health behavior 

choices unless we modify these habitual responses.

Another important difference between the two systems is the speed of learning. A change in 

automatic habitual responses of the Type 1 system occurs over a long time, requires a large 

number of trials, and extinguishes slowly [82]. The reasoning Type 2 system can learn 

rapidly through information, persuasion, and motivation, but can forget just as quickly.

A modeling approach based on the dual-process theory has a number of advantages in 

comparison to the two models described in previous sections. The computational modeling 

can take advantage of existing research in psychology on decision making and learning and 

may, therefore, be able to predict responses to stimuli in a variety of contexts. As such, it 

can incorporate mobile EMA and even trigger EMAs.

To provide an intuitive insight, we assume that each system responds concurrently to a 

stimulus, such as the logo of a fast food establishment. The system that responds faster will 

govern the response generation. In order for a participant to make a healthier choice, it is 

necessary to either train the Type 1 system to develop healthier habits or to coach the Type 2 

system to anticipate and preempt the habitual responses.
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To illustrate the ability of this model to reproduce the general characteristics of experimental 

data, we simulated the results of recently published experimental data from a study by 

Spring et al. [83] that was designed to examine the dynamics of an intervention to increase 

the duration of the participants’ physical activity per day. Each of the two types of systems 

was represented by a random variable that controlled each participant’s decision process 

regarding the activity level. A sample of simulation results based on this data is shown in 

Fig. 7. The red solid line represents the average daily activity in minutes, the black dashed 

line represents the Type 1 system, and the blue dotted line represents the Type 2 system. 

During the intervention, the Type 2 process quickly learns to adhere to the coach’s guidance, 

but it forgets to respond properly after the intervention is over. During the same time, the 

Type 1 process expertise is learning slowly, but takes over after the coaching ceases. This 

model can then be used to directly predict individual participants’ activity level as a function 

of time. The missing important ingredient of this model is how to quantify the coaches’ 

interventions to be able to predict the effect of these interventions and suggest the optimal 

ones.

VI. Integrating Monitoring and Modeling for Coaching Interventions

Our most recent evaluations of the Health Coaching Platform have tested the integration of 

data from sensors in the home: computational models that infer patient state, context, and 

adherence to goals; and intervention protocols to promote health behavior change. For our 

intervention protocols on cognitive training, sleep management, socialization, and physical 

exercise, we first use an in-home visit or Skype conferencing to assess current activity 

levels, health behavior goal selection, readiness to change, motivations, and barriers (when 

appropriate). For example, with our sleep intervention, we assessed sleep hygiene issues, 

anxiety, and circadian rhythm patterns before recommending changes to the environment or 

relaxation exercises. A tailored action plan was created and updated each week. A total of 33 

elderly participants (average age 80.3 ± 9.4 years) have now been coached over a period of 

two years, with substudies on medication management [19], [84], socialization [20], and 

interactive video exercise using the Kinect camera [17].

As an example of monitoring various types of data from the home and providing feedback 

for a tailored health intervention, our socialization module for older adults in the home 

focuses on several proxy measures for inferring degree of socialization: time and contacts on 

email, time and contacts on the phone, time and contacts on Skype (all older participants and 

an enrolled remote family member use SkypeTM), and inferred time out of the home. To 

assess a baseline degree of socialization at the beginning of an intervention, we use the 

Ludden social network scale-revised [85] and the UCLA-R loneliness scale [85]. For 

coaching purposes, we also use motivational interviewing to assess motivations, barriers, 

and readiness-to-change for each selected activity. Table II shows our Level 1 selection of 

socialization activities for an older adult participant’s weekly action plan. The feedback and 

recording of their participation in the intervention is based on computer, phone, or motion 

sensor data from the home or self-report for the in-person activities.

With the subset of our coaching participants that chose a socialization intervention (nine 

participants, 73.8 ± 6.7 years, 89% female), we found that we were able to maintain 
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adherence to their selected socialization activities over a period of nine weeks. At baseline, 

only two-third of our participants was completely satisfied with their level of socialization. 

Our goal was to be able to provide a socialization intervention using Skype that could 

improve their social network and time interacting with people. Fig. 8 shows a graph of their 

overall Skype usage in minutes for each week of the intervention. Although the usage 

dropped off somewhat as time went on, most participants used Skype at least 1 h/week, 

communicating with an average of five people during the intervention. All participants 

studied improved their level of socialization and continued to see a benefit in the 

maintenance phase of coaching (after the nine weeks) from using Skype to communicate 

with remote family members and friends.

One of the challenges demonstrated by this example lies in keeping adherence and 

motivation high throughout a lifestyle intervention. Coaching protocols must adapt to an 

individual’s change of state into a maintenance phase. Maintaining health behaviors is often 

harder to accomplish than a short-term change. One of our approaches has been to offer a 

menu of weekly activities for variety and challenge, as well as multiple intervention topics. 

The integration of estimates of patient state, context, and adherence to goals provides a 

valuable framework for providing tailored, timely, and potentially scalable health behavior 

change interventions.

VII. Limitations and Future Challenges

We have demonstrated the ability to integrate data science with models of sensors, activity, 

context, and behavior change into a coherent health coaching platform and deliver 

interventions in a way that keeps participants motivated and engaged. However, there are 

still many issues needing further attention. With special populations, such as older adults, 

ease-of-use and meaningfulness of messaging remains a top priority. Expanding use to 

minority and underserved populations will also need testing and design input. We currently 

have limited approaches to modeling privacy and data sharing preferences. The informed 

sharing of sensitive data requires insight that new participants often lack. We need to be able 

to estimate preferences, and do our best to share summarized data in a useful but privacy 

preserving manner.

At the outset, we described a vision of behavioral informatics in which unobtrusive sources 

of information are used to monitor, assess, infer, and intervene to help people improve and 

manage their behaviors, consequently improving their health and quality of life. Despite the 

advances in sensor technology, data science, computational modeling, inference, 

intervention optimization, and machine-assisted coaching platforms, there are many 

remaining challenges that need to be surmounted to implement this vision.

One of the outstanding problems stems from the variability across and within individuals in 

their health behaviors. Developing generalizable behavior inference algorithms that would 

not require a new training set for each new individual is inherently difficult. Although there 

have been some successes, there is a need to improve training approaches that would 

generalize across and within individuals without having a “ground truth.” Behaviors related 

to activity (exercising, sleeping, physical activity) are relatively observable and measurable 
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by current sensor technologies; the challenges in using these sensors in long-term 

monitoring include technical concerns (such as battery life, user acceptance, and adherence 

to monitoring) and inter- and intraindividual variability of the behavioral patterns.

Several important health behaviors are still difficult to observe and quantify objectively and 

unobtrusively. These include diet, nutrition, and energy intake. Assessment of social and 

emotional aspects of behavior would also benefit from improved inference and assessment 

techniques.

Another important issue is false alarm fatigue. The generation of false alarms is a serious 

problem for behavioral informatics because of the continuous monitoring of low probability 

events. Under continuous or frequent monitoring, even well-performing detectors will likely 

generate a high proportion of false alarms. Consider, for example, a fall detector with 

sensitivity and specificity at 99%. For most detection tasks, this level of performance would 

be considered very good. However, since the prior probability of a fall in each hour is 

extremely low (<0.01), continuous monitoring may identify thousands of accelerometer or 

movement events to classify per hour; in this situation, a 99% specificity detector would 

generate about ten false alarms per hour. Despite the detector performance, false alarm 

fatigue needs to be addressed before these systems can be routinely used. One intriguing 

approach to mitigating this problem is to incorporate the utility of detecting an important 

event like a fall versus the disutility of a false alarm in the decision process.

A closely related issue is the cost-benefit tradeoff of an intervention and participant 

adherence. This is intimately tied to the problem of discounting future benefits relative to an 

immediate cost. For example, if a coaching intervention is not perceived to have immediate 

benefits, the participating individual may not adhere to the shared goals and activities agreed 

to with the coach. The challenge of preventive healthcare, in general, is to increase the value 

of future benefits and convert them to more immediate gains.

VIII. Conclusion

Future work in this area will generate a set of tools and methods that will help improve the 

well being of all, including older adults, underserved populations, and those residing in rural 

areas and is likely to have a significant societal impact. The proposed computational 

modeling-based approach to the assessment of behavioral, physical, cognitive, and affective 

states is expected to revolutionize healthcare delivery, including the provision of effective, 

timely, and targeted interventions. Further, the social benefits of behavioral informatics 

extend beyond healthcare, ranging from impacts in engineering disciplines, such as robotics, 

automation, and surveillance, to broad areas of education, economics, and scientific thrusts 

such as U.S. President Barack Obama’s Brain Initiative (connecting brain and behaviors). 

Additionally, work in this new area of behavioral informatics will inspire a new generation 

of students, who will be able to address problems at the intersection of computer science, 

engineering, and behavioral and social sciences.

The main tenant of this paper is the notion that multiscale computational models ranging 

from sensors to behavioral decisions is an important prerequisite for optimizing 

interventions aiding individuals in learning and adhering to better health behaviors. In 
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conclusion, we would like to note that this paper only begins to scratch the surface of the 

problem of helping people to improve their health behaviors. Significant efforts in areas, 

such as sensor development, modeling, algorithm design, and clinical evaluations, are 

needed to address the complex issues in improving health behaviors.
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Fig. 1. 
Individual sensors collect data from the home and environment. Inference algorithms 

generate estimates of behaviors, context, and important clinical states, which are used in 

health interventions. Tailored summaries and feedback are presented to the patient.
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Fig. 2. 
Framework for Northeastern University’s Health Coaching Platform includes a dynamic 

user model based on initial assessments and updated with sensor data. This user model 

drives the semiautomated tailored messaging for the health interventions.
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Fig. 3. 
Example of a multiscale model used for an inference of exercising behaviors from two 

different sensors—accelerometers and an optical HR monitoring device.
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Fig. 4. 
Model-based state classification based on beat-to-beat HR signal analysis.
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Fig. 5. 
Example of physiological and behavioral state classification based on a multiscale model of 

HRV. The line above describes cumulative autonomic nervous system stress and recovery 

index from 0 (stressed) to 100 (fully recovered). The lower graph shows minute-to-minute 

state classification (green—physiological recovery; red—physiological stress responses; 

blue—physical exercise; white—other state/nonclassified). Height of the bars represent 

strength of the physiological reaction (Source: Firstbeat Technologies, Jyväskylä, Finland).
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Fig. 6. 
Example of a HMM for the TTM of behavior change. Only a subset of the states and 

transitions and output transformations are shown.
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Fig. 7. 
Dynamics of a participant’s responses to coaching for increasing daily physical activity. 

Simulated data from Spring et al. [83].
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Fig. 8. 
Weekly overall Skype usage (in minutes) by participants in the Socialization Intervention. 

The colors represent different participants.
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TABLE I

Sample of Data Sources (E—Environment, M—Mobile, O—Other)

Sensor Phenomena Type

PIR Movement of a person E

Contact Switches Open/close doors E

Bed sensors Movements, HR, respiration E

3-D Cameras (Kinect) Image & depth E

Accelerometers Physical activity M

Gyroscopes Orientation, gestures M

Computer/keyboard User interactions E, M

RFID Proximity to objects E, M

Environmental sensors Temperature, light, noise, etc. E, M

Electrodes, optical sensor HR M

Mobile phone usage log, calendar Social interactions, stress, M

Credit card log Diet, other behaviors O

Questionnaires Any behaviors and affective states O
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TABLE II

Activity Selections for the Level 1 Phase of the Socialization Coaching Intervention

Technology Activity Freq

Computer Make a Skype call to family member, friend, study participant, or coach 1–3/wk

Computer Participate in group Skype call 1/wk

Computer Send email to family member, friend, study participant, or coach 1–3/wk

Computer Participate in online support group or chat 1/wk

Computer Play online card or board game with others 1/wk

Computer Use Facebook—new interaction 1/wk

Phone Make a phone call to family member, friend, study participant, or coach 1–3/wk

In Person Visit with family or friends 1–2/wk

In Person Play a board or card game with someone 1/wk

In Person Participate in a community event 1/wk

In Person Participate in a volunteer activity 1/wk

In Person Walk in a public place (mall, park) for at least10 min 1/wk
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